

Centrifugal Chiller

R134a 350-1800RT Standard 2000-4000RT Nonstandard

50Hz/60Hz

45 YEARS EXPERIENCE IN CHILLER INDUSTRY

www.fujiair.com

Workshop

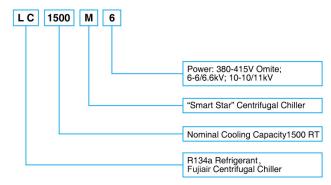


Table of Contents

Company Introduction	P01
Product Introduction	P04
Product Feature	P05
Specification	P11
Dimension	P15
Construction	P18
PLC Control	P20
Recommended Cable Size	P22
Control System	P23
Refrigeration And lubricant System	P25
Options For Unit	P28
Advanced And Integrated Machining Device	P29

Chiller Nomencalure

Customized Capability in Centrifugal Chiller

- Multi medium are available: Water/Brine/Sea water/Glycol;
- Power supply: 380/400/415V/460V, 6kV/10kV, 50Hz/60Hz;
- Cooling capacity: 300RT to 4000RT;
- Industry usage centrifugal chiller especially low temperature unit.

Product Feature

- R134a Refrigerant.
- Positive pressure, no ingestion of moisture and contaminants.
- Semi-hermetic refrigerant-cooled motor eliminates shaft seal maintenance, alignment and vibration problems.
- Modern Gear Drive compressor, low inertia components for low bearing loads, fast acceleration and coast down.
- New impeller designs, designed for maximum part-load efficiency.
- Micro-tech controller with PLC, optimize chiller operation for site conditions.
- Inlet guide vane work with moveable diffuser modulate the capacity from 10% to 100% without stall and surge.

Compressor

The rotor assembly consists of a heat-treated alloy steel drive shaft with a high strength, and The high speed shaft is forged with high strenght and realiability. The enclosed type impeller is designed for balanced thrust and is dynamically balanced and overspeed tested for smooth, vibration free operation.

Impeller And Inlet Guide Vane

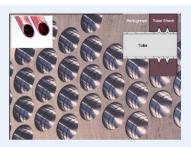
High strength aluminum-alloy compressor impellers feature backward-curved vanes for high efficiency Airfoil shaped inlet guide vane minimize flow disruption for the most efficient part load performance. Precisely positioned and tightly fitted, it allows the compressor to unload smoothly from 10% to 100% load output for excellent operation in real air conditioning application. The movement is controlled by a mounted electrical operator in response to refrigeration load on the evaporator. Impeller is made of high strength aluminum alloy which is tested at 125% design operating speed.

Gear

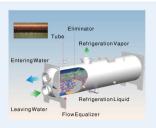
The specially engineered, single helical gears with crowned teeth keep more than one tooth is in contact at all times to provide even distribution of compressor load and quiet operation. Gear tooth surfaces are case hardened and precision ground which can reach the class of 5. Gears are integrally assembled in the compressor rotor support and are film lubricated. Each gear is individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces. The double layer compressor case design prevent the gear contacting noise.

The impeller connect with the main shaft without a key, which is Fujiair patent technology designed to avoid fault and enhance reliability.

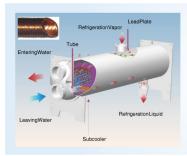
Motor


Fujiair centrifugal chiller use semi-hemetic two-pole motor which cooled by the circular refrigeration, Winding embedded sensors provide positive thermal protection to the motor. Asynchronism squirrel cage type with higher operation performance and long life span. Refrigerant cooled motor keeps motor heat out of the mechanical room and minimizes the vibration, shaft seal maintenance, vibration and shaft seal maintenance of open motors. Refrigerant cooled motor have lower inrush currents and low noise than open motor. No expensive mechanical seal is required.

Semi-hermetic motors, there is no need to provide additional ventilation or tempering (air conditioning) of the mechanical room than open motor design. The motor is bolt connected to the compressor gear housing and shaft labyrinth seas prevents refrigerant leakage from the motor to the gear box. Low voltage motor provide 6 terminal for reduced voltage starting (wye-delta or auto transformer start). High voltage motor provide three terminal posts for full voltage (across the line). Motor terminal pads are supplied. The moveable steel sheet terminal box encloses the terminal board area.


Heat Exchanger Tube

Heat exchanger tubes are high-efficiency, externally and internally enhanced type to provide optimum performance. Tubes in both the evaporator and condenser are 3/4" O.D. copper alloy providing a internal and external surface. This provides extra wall thick ness (up to twice as thick) and non-work hardened copper at the support location, extending the life of the heat exchanger. Each tube is roller expanded into the tube sheets providing a leakproof seal, and is individually replaceable. Copper alloy material as a standard choice and 90/10 copper-nickel, 304 stainless steel or titanium material are also available.

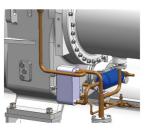


Evaporator

The evaporator is a shell and tube, flooded type heat exchanger. A distributor trough provides uniform distribution of refrigerant over the entire shell length to yield optimum heat transfer. The evaporator shell contains a dual refrigerant relief valve arrangement set at 180 PSIG (1241 kPa) or sigle-relief valve arrangement, Intermediate tube support sheets positioned along the shell axis prevent relative tube motion. The waterside is hydrostatically tested at 1.5 times maximum working pressure.

Condenser

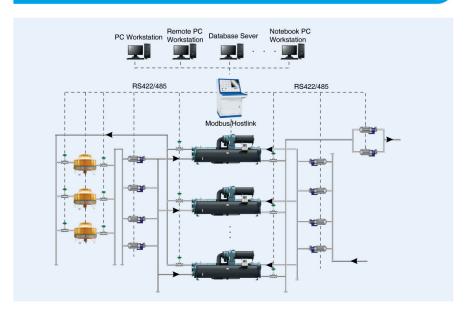
The condenser is a shell and tube type, with discharge gas baffle to prevent direct high velocity impingement on the tubes. The baffle is also used to distribute the refrigerant gas flow properly for most efficient heat transfer. An integral sub-cooler is located at the bottom of the condenser shell providing highly effective liquid refrigerant subcooling to provide the highest cycle efficiency. Regarding the dule stage compressing, using the economizer can improve the efficiency by 5-8%. The condenser contains a refrigerant relief valve sets at 1.6 MPa. Maximum waterside working pressure of 1.05 MPa is standard. The waterside is hydrostatically tested at 1.5 times maximum working pressure.


Water Box

The removable water boxes are fabricated of steel. The design working pressure is 150 PSIG (1034 kPa) and the boxes are tested at 225 PSIG (1551 kPa). Integral steel water baffles are located and welded with in the water box to provide the required pass arrangements. These nozzle connetions are suit able for Victaulic couplings, welding or langes, and are capped when shipment. Plugged 3/4" drain and vent connections are provided in each water box.

Outside Oil Filter And Oil Cooler

Outside oil filter and oil cooler is easy to do the maintain and replacement. You just need to stop the isolation valve and you can change the filter and oil cooler.



Micro-computer Control System

Fujiair adopts the state of art microcomputer control system with large 10.4 inch touchable screen LCD display with high disturbance resistance. The LCD touchable screen with picture view of chiller parameter for fast and easy access make the operation relatively simple. It can also contact with the user's PC and carry out the remote control for start, operation and stop for the cooling system. More than 30 items protection and malfunction used to make the chiller operation secure. The latest 10 items of failure parameter can be recorded for query.

Centralized Control System

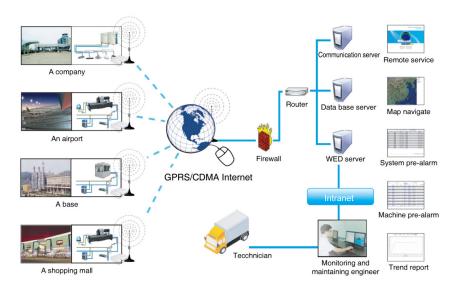
The centralized control system integrates the chiller, chilling water pump, chilled water pump and cooling tower. It includes the reading and writing of data to allow system monitoring, control and alarm Notification as specified in the unit sequence of operation and the system points list to optimized the system running condition.

- Adjustment of chiller operation setpoint.
- Real time inspection and supervising of chiller operation state.
- Real time failure inspection.
- Historical operation data storage.

Remote Service System

Fujiair Central Air-conditioning Remote Service System consists of many Air-conditioning network devices around the world and two data centers.

Profiting from various innovation technologies, the system can provide many kinds of incremental services for clients.


Consummated air-conditioning trend & diagnostic service.

- Real time data display service.
- System can acquire real time data, and display them from the terminal interfaces.
- Remote data diagnostic service.

System can analyze the operation information, acquire failure and protection data of the units, and providing full and accurate data for maintenance to ensure normal operation. Powerful air-conditioning data store & process service.

Data process expanding service.

System can provide uniform data interface for future expanded subsystem, and use for expert system, energy consuming analytic system, etc.

Specification

LC Series (R134a, Single-stage Compression)

	Model		LC350M	LC400M	LC450M	LC500M	LC550M	LC600M				
	RT		350	400	450	500	550	600				
Cooling	kW		1230	1406	1582	1758	1934	2110				
capacity	104kcal/h		105	120	136	151	166	181				
	Chilled water flow volume m³/h		210	242	272	302	332	362				
	Chilled water pressure drop	kPa	62	68	66	64	68	70				
Evaporator	Pass	1			2							
Evaporator	Chilled water inlet/outlet temperature	°C			12	/7						
	Water pipe inlet/outlet diameter	1	DN200	DN200	DN200	DN200	DN250	DN250				
	Cooling water flow volume	m³/h	256	292	327	362	397	433				
	Cooling water pressure drop	kPa	83	88	82	80	85	88				
Condenser	Pass	1	2									
	Cooling water inlet/outlet temperature	°C	32/37									
	Water pipe inlet/outlet diameter	1	DN200	DN200	DN200	DN200	DN250	DN250				
	Power input	kW	230	262	293	316	345	373				
Compressor	Power supply			380V/3P/50Hz (44	00V/415V/3P/50H	łz, 380V/460V/3	P/60Hz as option	١)				
	Motor cooled by				Refriç	gerant						
Effic	iency	kW/RT	0.657	0.655	0.651	0.632	0.627	0.622				
Weight	Shipping weight	kg	7116	7254	7438	7610	8117	8265				
weignt	Running weight	kg	8261	8456	8752	9095	9726	9934				
	Length	mm	4673	4673	4673	4673	4730	4730				
Dimension	Width	mm	1850	1850	1850	1850	1990	1990				
	Height	mm	2019	2019	2019	2019	2127	2127				

Notes

- 1. Nominal Cooling capacities are based on following conditions:
- Chilled water inlet/outlet temperature 12°C/7°C (53.6°F/44.6°F); Cooling water inlet/outlet temperature 32°C/37°C (89.6°F/98.6°F).
- 2. The rated currrent datas listed in the above table are based on 380V/3P/50Hz power supply.
- 3. The design fouling factor for both evaporator and condenser are 0.086m².°C/kW (0.0005ft².°F-hr/Btu), otherwise can be customized.
- 4. The design working pressure for both evaporator and condenser are 1.05MPa, higher pressure demand can be customized.
- 5. Due to possible product improvement, we reserve the right to make changes in design and construction at any time without notice.

Specification

LC Series (R134a, Single-stage Compression)

	Model		LC650M	LC700M	LC750M	LC800M	LC850M		
	RT		650	700	750	800	850		
Cooling	kW		2285	2461	2637	2813	2988		
capacity	104kcal/h		196	211	226	242	257		
	Chilled water flow volume	m³/h	392	422	452	484	514		
	Chilled water pressure drop	kPa	82	86	82	83	78		
Evaporator	Pass	1			2				
Evaporator	Chilled water inlet/outlet temperature	°C			12/7				
	Water pipe inlet/outlet diameter	1	DN250	DN250	DN250	DN300	DN300		
	Cooling water flow volume	m³/h	466	501	537	575	611		
	Cooling water pressure drop	kPa	81	93	92	78	87		
Condenser	Pass	1			2				
	Cooling water inlet/outlet temperature	°C	32/37						
	Water pipe inlet/outlet diameter	1	DN250	DN250	DN250	DN300	DN300		
	Power input	kW	400	424	455	495	525		
Compressor	Power supply		380)V/3P/50Hz (400V/41	5V/3P/50Hz, 380V/4	160V/3P/60Hz as opt	ion)		
	Motor cooled by		Refrigerant						
Effic	iency	kW/RT	0.615	0.606	0.607	0.619	0.618		
Weight	Shipping weight	kg	11343	11398	11668	11923	12333		
weight	Running weight	kg	13112	13227	13456	13859	14575		
	Length	mm	5077	5077	5077	5077	5077		
Dimension	Width	mm	2200	2200	2200	2300	2300		
	Height	mm	2540	2540	2540	2540	2540		

Notes:

- 1. Nominal Cooling capacities are based on following conditions:
- Chilled water inlet/outlet temperature 12°C/7°C (53.6°F/44.6°F); Cooling water inlet/outlet temperature 32°C/37°C (89.6°F/98.6°F).
- 2. The rated currrent datas listed in the above table are based on 380V/3P/50Hz power supply.
- $3. \ The design fouling factor for both evaporator and condenser are \ 0.086 m^2 \cdot ^\circ C/kW \ (0.0005 ft^2 \cdot ^\circ F \cdot hr/Btu), otherwise can be customized.$
- 4. The design working pressure for both evaporator and condenser are 1.05MPa, higher pressure demand can be customized.
- 5. Due to possible product improvement, we reserve the right to make changes in design and construction at any time without notice.

Specification

LC Series (R134a, Single-stage Compression)

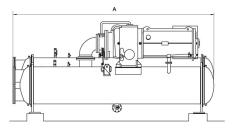
	Model		LC900M	LC950M	LC1000M	LC1100M	LC1200M				
	RT		900	950	1000	1100	1200				
Cooling	kW		3165	3340	3516	3867	4220				
capacity	104kcal/h		272	287	302	332	363				
	Chilled water flow volume	m³/h	544	574	604	664	726				
	Chilled water pressure drop	kPa	82	81	88	80	90				
Evaporator	Pass	1			2						
Evaporator	Chilled water inlet/outlet temperature	°C	12/7								
	Water pipe inlet/outlet diameter	1	DN300	DN300	DN300	DN300	DN300				
Condenser	Cooling water flow volume	m³/h	645	680	719	789	862				
	Cooling water pressure drop	kPa	84	79	86	91	96				
	Pass	1	2								
	Cooling water inlet/outlet temperature	°C	32/37								
	Water pipe inlet/outlet diameter	1	DN300	DN300	DN300	DN350	DN350				
	Power input	kW	547	577	623	679	737				
Compressor	Power supply		380	V/3P/50Hz (400V/4	15V/3P/50Hz, 380V/	160V/3P/60Hz as op	ion)				
	Motor cooled by				Refrigerant						
Effic	iency	kW/RT	0.608	0.607	0.623	0.617	0.614				
Majoba	Shipping weight	kg	12483	14931	14931	15198	15320				
Weight	Running weight	kg	14769	17575	17743	17827	18395				
	Length	mm	5077	5160	5160	5160	5160				
Dimension	Width	mm	2300	2500	2500	2500	2500				
	Height	mm	2540	2625	2625	2625	2625				

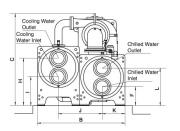
Notes:

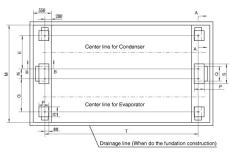
- 1. Nominal Cooling capacities are based on following conditions:
- Chilled water inlet/outlet temperature 12°C/7°C (53.6°F/44.6°F); Cooling water inlet/outlet temperature 32°C/37°C (89.6°F/98.6°F).
- 2. The rated currrent datas listed in the above table are based on 380V/3P/50Hz power supply.
- 3. The design fouling factor for both evaporator and condenser are 0.086m².°C/kW (0.0005ft².°F-hr/Btu), otherwise can be customized.
- 4. The design working pressure for both evaporator and condenser are 1.05MPa, higher pressure demand can be customized.
- 5. Due to possible product improvement, we reserve the right to make changes in design and construction at any time without notice.

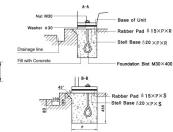
Specification

LC Series (R134a, Single-stage Compression)

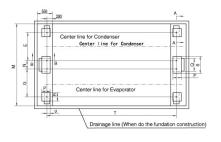

	Model		LC1300M10	LC1400M10	LC1500M10	LC1600M10	LC1700M10	LC1800M10			
	RT		1300	1400	1500	1600	1700	1800			
Cooling	kW		4572	4924	5276	5627	5979	6331			
capacity	104kcal/h			423	454	484	514	544			
	Chilled water flow volume	m³/h	786	847	907	968	1028	1089			
	Chilled water pressure drop	kPa	102	115	120	105	106	115			
Evaporator	Pass	1			2	2					
Evaporator	Chilled water inlet/outlet temperature	°C		12/7							
	Water pipe inlet/outlet diameter	1	DN350	DN350	DN350	DN400	DN400	DN400			
	Cooling water flow volume	m³/h	926	992	1063	1134	1205	1276			
	Cooling water pressure drop	kPa	94	98	108	103	104	106			
Condenser	Pass	1	2								
	Cooling water inlet/outlet temperature	°C	32/37								
	Water pipe inlet/outlet diameter	1	DN350	DN350	DN350	DN400	DN400	DN400			
	Power input	kW	815	850	920	980	1030	1070			
Compressor	Power supply		,	10kV/3P/50	Hz (6kV/3P/50H	z,6.6kV/3P/60H	lz as option)				
	Motor cooled by		Refrigerant								
Effic	iency	kW/RT	0.627	0.607	0.613	0.613	0.606	0.594			
Weight	Shipping weight	kg	18801	18949	19355	20899	21134	21484			
***Gigiti	Running weight	kg	20658	21415	21590	24044	25166	25276			
	Length	mm	5789	5789	5789	5866	5866	5866			
Dimension	Width	mm	2700	2700	2700	2880	2880	2880			
	Height	mm	2810	2810	2810	2945	2945	2945			

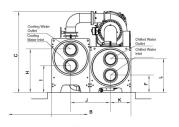

Notes:

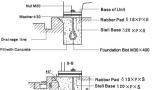

- 1. Nominal Cooling capacities are based on following conditions:
- Chilled water inlet/outlet temperature 12°C/7°C (53.6°F/44.6°F); Cooling water inlet/outlet temperature 32°C/37°C (89.6°F/98.6°F).
- 2. The rated currrent datas listed in the above table are based on 10kV/3P/50Hz power supply.
- 3. The design fouling factor for both evaporator and condenser are 0.086m²-°C/kW (0.0005ft²-°F-hr/Btu), otherwise can be customized.
- 4. The design working pressure for both evaporator and condenser are 1.05MPa, higher pressure demand can be customized.
- 5. Due to possible product improvement, we reserve the right to make changes in design and construction at any time without notice.

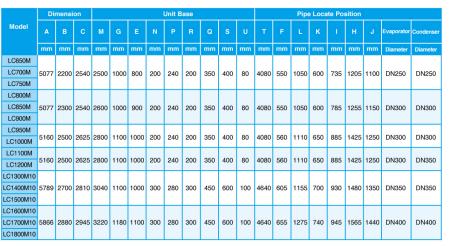

Dimension

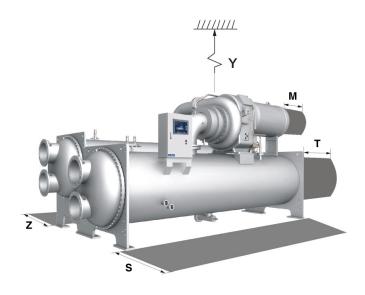
A LC350M-LC600M



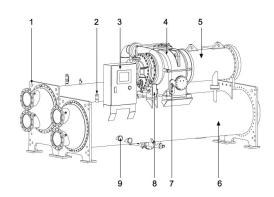

	Di	mensi	on		Unit Base				Pipe Locate Position											
Model	А	В	С	M	G	Е	N	Р	R	Q		т	F	L	К	1	н		Evaporator	Condense
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Diameter	Diameter
LC350M	4673	1050	2019	2150	780	670	200	240	200	350	400	3780	410	820	490	650	1020	005	DN200	DN200
LC400M	46/3	1673 1850	2019	2150	780	670	200	240	200	350	400	3/80	410	820	490	650	1020	925	DN200	DN200
LC450M	4673	1050	2010	2150	780	670	200	240	200	350	400	3780	410	820	490	650	1020		DNIGOO	DNIGOO
LC500M	4073 1000 2		2019	2130	760	670	200	240	200	330	400	3/60	410	020	490	650	1020	925	DN200	DN200
LC550M	4730	1000	2127	2290	870	720	200	240	200	350	400	3780	460	890	535	635	1035		DNIOSO	DNOSO
LC600M	4/30	1990	2121	2290	570	720	200	240	200	550	400	5760	400	030	555	033	1033	995	DN250	DN250


Dimension


B LC650M-LC1800M10



Service Space

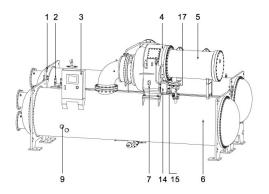


Model	Service Space(mm)								
Model	M	T	Y	S	Z				
LC350M~LC600M	1100	4200	1200	1200	1000				
LC650M~LC1200M	1500	4500	1300	1300	1000				
LC1300M10~LC1800M10	1500	5300	1300	1300	1000				

Construction

Front View

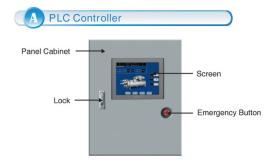
Rear View



- 1. Lifting Points(4)
- 2. Evaporator Relief Valve
- 3. PLC Controller
- 4. Compressor
- 5. Main Motor
- 6. Evaporator
- 7. Oil Level Indicator
- 8. Guide Vane Actuator
- 9. Refrigerant Level Indicator
- 10. Air Release Valve
- 11. Condenser Security Valve
- 12. Condenser
- 13. Refrigerant Purity Device
- 14. Oil Cooler
- 15. Oil Pump
- 16. Oil Pump Electrical Panel
- 17. Electrical Heater
- 18. Water Drainage Valve

Construction

Front View



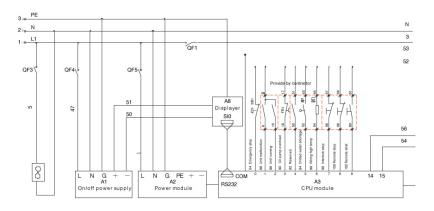
Rear View

- 1. Lifting Points(4)
- 2. Evaporator Relief Valve
- 3. PLC Controller
- 4. Compressor
- 5. Main Motor
- 6. Evaporator
- 7. Oil Level Indicator
- 8. Guide Vane Actuator
- 9. Refrigerant Level Indicator
- 10. Air Release Valve
- 11. Condenser Security Valve
- 12. Condenser
- 13. Refrigerant Purity Device
- 14. Oil Cooler
- 15. Oil Pump
- 16. Oil Pump Electrical Panel
- 17. Electrical Heater
- 18. Water Drainage Valve
- 19. Discharge Isolation Valve (Optional)
- 20. Liquid Line Isolation Valve (Optional)

PLC Control

B Touchable Screen

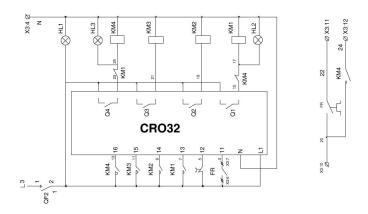
PLC Control


Display Or	n/Off Status
Emergency button on/off	Interlock on/off
Remote control on/off	Remote start on/off
Oil pump overload on/off	Chilled water supply on/off
Winding overheat protect on/off	Compressor operation on/off
Manual start/stop	Oil heater on/off
Oil pump on/off	Chilled water pump on/off
Cooling water pump on/off	Cooling tower on/off
Display Sir	nulate Date
Inlet Guide Vane openness	Running current
Chilled water inlet temperature	Chilled water outlet temperature
Cooling water inlet temperature	Cooling water outlet temperature
Oil sump temperature	Oil temperature
Condensing pressure	Evaporating pressure
Oil supply pressure	Oil sump pressure
Oil supply pressure difference	Total power on time
Total running time	Total start up times
Operatio	n Setting
Restart temperature	Pause temperature
Rated motor currency	Full load currency
Chilled water outlet temperature	PID setting
Inlet Guide Vane openness to prevent surge	Max Inlet Guide Vane openness
Gather period	Atmosphere
Low oil supply pressure difference	Lowest oil supply pressure difference
Lowest oil sump temperature	High oil temperature
Highest oil temperature	Low chilled water temperature
Low evaporating pressure	Lowest evaporating pressure
High condensing temperature	Highest condensing temperature

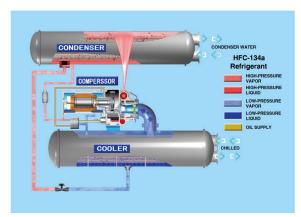
Recommended Cable Size

	38	30V		High Volt	age
Model	JSB2A Cable size (in)	JSB2A Cable size (out)	Auto transformer in/out	6 (kV)	10 (kV)
LC350M	BVR240	BVR185	BVR240	_	_
LC400M	BVR240	BVR185	BVR240	_	_
LC450M	BVR300	BVR240	BVR300	_	_
LC500M	2*BVR185	BVR240	2*BVR185	_	_
LC550M	2*BVR240	BVR300	2*BVR240	_	_
LC600M	2*BVR240	BVR300	2*BVR240	_	_
LC650M	2*BVR240	BVR300	2*BVR240	_	_
LC700M	2*BVR240	BVR300	2*BVR240	_	_
LC750M	2*BVR240	2*BVR185	2*BVR240	_	_
LC800M	2*BVR300	2*BVR185	2*BVR300	_	_
LC850M	2*BVR300	2*BVR185	2*BVR300	_	_
LC900M	2*BVR300	2*BVR240	2*BVR300	_	_
LC950M	3*BVR240	2*BVR240	3*BVR240	_	_
LC1000M	3*BVR240	2*BVR240	3*BVR240	YJV50	YJV35
LC1100M	3*BVR300	2*BVR300	3*BVR300	YJV50	YJV35
LC1200M	3*BVR300	2*BVR300	3*BVR300	YJV50	YJV35
LC1300M10				YJV50	YJV35
LC1400M10				YJV50	YJV35
LC1500M10				YJV50	YJV35
LC1600M10				YJV50	YJV50
LC1700M10				YJV50	YJV50
LC1800M10				YJV50	YJV50

Control System

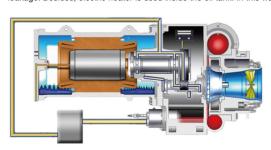

Microcomputer System Principle

	Mocrocomputor Components								
Code	A1	A2	А3	A9	QF1—4				
Name Model	On/off power supply	Power module	CPU module	Displayer	Air switch				
Code	SB1	KA1—4	EV	BP	ВТ				
Name Model	Button	Middle relay	Exhaust fan	Water flow switch	wiring temp sensor				


Control System

Wye-delta Starter Principle

Refrigeration And Lubricant System

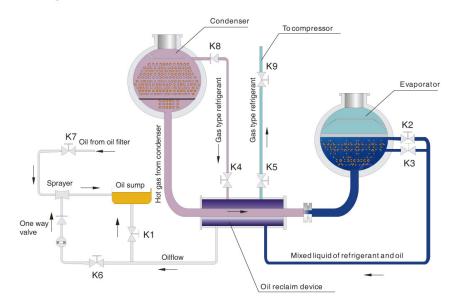


Refrigeration cycle Fujiair LC centrifugal chiller is the steam-compressing type. The refrigerant will be imposed vertical energy by the high speed impeller to increase it's temperature and pressure. The high pressure and temperature refrigerant will spread it thermal energy in condenser by the chilling water to decrease the temperature. After orifice throttling the pressure will be decrease dramatically. In evaporator the low temperature and low pressure refrigerant will absorb the thermal energy from the chilled water to evaporating.

The low temperature chilled water produced in this refrigeration circulation. One refrigeration circulation includes refrigeration includes four indispensable processes: compressing, condensing, throttling and evaporating.

Lubricant System

The oil system provides the necessary lubricent to compressor bearings and gears. The oil is Being pressurized by oil pump which driven by the enclosed motor which builting inside the oil tank. After being cooled down by the oil cooler to certain temperature (35°C~55°C) the lube is transmitted to the oil filter for filtration. And then it will be adjusted the pressure before transmitted to bearings. To minimize the lube leaked into the main motor and then enter the R134a in evaporator, combs are installed at inner side of motor bearings at both ends for sealing. High pressure gas transmitted from the compressor chamber is used for preventing oil leakage. Besides, electric heater is used inside the oil tank. In this way, when the compressor shuts down,


certain oil temperature (45°C~55°C) can be kept, thus to prevent the gas R134a from entering the oil to decrease the viscosity of the lubricant. Therefore, if the compressor should be shuted down, it is necessary to keep oil heater on to make the oil temperature in certain temperature. If the compressor will out of service for a long time, it is required to power on and run the oil heater to increase the oil temperature to 45°C~55°C.

Oil Reclaim System

Patented Design for Oil Reclaim System

During the running of refrigerating unit, a small amount of lube interfuses into the refrigerant. The mixed oil-refrigerant goes through compressor bearings and gearbox, and then interfuses into the condenser. After the refrigerant be evaporated it will float on the liquid refrigerant. Fujiair patented reclaim system used to reclaim the oil from the heat exchanger back to the oil tank. It will improve the refrigerant purity to increase the efficiency and provide sufficient oil supply to compressor.

Reclaim system is installed below the condenser.

No.	Process	Valve	K1	K2 or K3	K4	K5	K6	K7
1	Manual	Separation of refrigerant and lubricant oil	×	0	Δ	0	×	×
	Iviariuai	Lubricant oil reclaimation	0	×	×	×	×	×
2	Automatic			0	×	0	0	0
3	When ref device is	rigerating medium purification not used	×	×	×	0	×	×

Note: O: On x: Off △: Less open K8, K9 Valves keep open

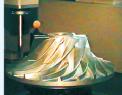
Starter Type

Model	Dimension	Outside View
Wye-delta starter	L×W×H: 800×750×2100mm	
VSD starter	L×W×H: 615×610×2010mm	
Auto transformer starter	L×W×H: 1100×2000×2400mm	
Across the line starter	L×W×H: 1000×1500×2300mm	

Options For Unit

- VSD (Variable Speed Drive)
- Solid State Starter
- Auto Transformer Starter
- Across The Line Starter
- Dual Compressors
- Refrigerant Isolation Valves
- Customerlized Pass on Evaporator/Condenser
- Customerlized Marine Water Box on Evaporator/Condenser
- High Pressure Water Side Construction (2.0MPa)
- Remote Monitor/Control System
- Sectinal Shipment
- Spring Vibration Isolation
- Evaporator Shell 1 1/2 Inch (40mm) Insulation
- **■** Evaporator/Condenser Water Pipe Victualic Connection

Advanced And Integrated Machining Device


Germany GMD 5-aixs Machining Center

IMS 3-axis Coordinate Measuring Machine

Germany Zeiss 4-axis Coordinate Measuring

Germany Schenck Dynamic Balancing Machine

Italy 5-aixs Machining Center

Germany Schenck Dynamic Balancing Machine

